Features

« Utilizes the AVR® RISC Architecture
* AVR - High-performance and Low-power RISC Architecture
— 120 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 20 MIPS Throughput at 20 MHz
* Data and Non-volatile Program and Data Memories
— 2K Bytes of In-System Self Programmable Flash
Endurance 10,000 Write/Erase Cycles
— 128 Bytes In-System Programmable EEPROM
Endurance: 100,000 Write/Erase Cycles
— 128 Bytes Internal SRAM
— Programming Lock for Flash Program and EEPROM Data Security
* Peripheral Features
— One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
— One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Modes
— Four PWM Channels
— On-chip Analog Comparator
— Programmable Watchdog Timer with On-chip Oscillator
— USI - Universal Serial Interface
— Full Duplex USART
* Special Microcontroller Features
— debugWIRE On-chip Debugging
— In-System Programmable via SPI Port
— External and Internal Interrupt Sources
— Low-power Idle, Power-down, and Standby Modes
— Enhanced Power-on Reset Circuit
— Programmable Brown-out Detection Circuit
— Internal Calibrated Oscillator
* 1/0 and Packages
— 18 Programmable I/O Lines
— 20-pin PDIP, 20-pin SOIC, 20-pad QFN/MLF
* Operating Voltages
— 1.8 — 5.5V (ATtiny2313V)
— 2.7 - 5.5V (ATtiny2313)
* Speed Grades
— ATtiny2313V: 0-4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
— ATtiny2313: 0 - 10 MHz @ 2.7 - 5.5V, 0 — 20 MHz @ 4.5 - 5.5V
* Typical Power Consumption
— Active Mode
1 MHz, 1.8V: 230 pA
32 kHz, 1.8V: 20 pA (including oscillator)
— Power-down Mode
<0.1 yA at 1.8V

ATMEL

Y ()

8-bit AVR
Microcontroller
with 2K Bytes
In-System
Programmable
Flash

ATtiny2313/V

Preliminary

Rev. 2543L-AVR-08/10

ATMEL

Pin Figure 1. Pinout ATtiny2313
Configurations PDIP/SOIC
—
(RESET/dW) PA2 O] | 20lRvee
(RXD) PDO O » 19| PB7 (UCSK/SCL/PCINT?)
(TXD) PD1 O 3 18|72 PB6 (MISO/DO/PCINTS)
(XTAL2) PA1 O 4 17|72 PB5 (MOSI/DI/SDA/PCINTS)
(XTAL1) PAO O 5 16|72 PB4 (OC1B/PCINT4)
(CKOUT/XCKI/INTO) PD2] 6 15— PB3 (OC1A/PCINT3)
(INT1) PD3 7 142 PB2 (OCOA/PCINT2)
(TO) PD4] 8 13|72 PB1 (AIN1/PCINT1)
(OCO0B/T1) PD5 {9 12 PBO (AINO/PCINTO)
GND 10 112 PD6 (ICP)
MLF
.
z 2
o Z
- £9
X =
2 ¢5
= g a
o8 n 3
X W O =
€l 2 2
o ~n O~ ©
0O g O m
o o > 0 o
110 m
O 285 8
(TXD) PD1 kS mTTTTTTT 15 [PB5 (MOSI/DI/SDA/PCINTS)
XTAL2) PAL (]2 ' 141 PB4 (OC1B/PCINT4)
!
(XTALL) PAO 3 ! i 13[J PB3 (OC1A/PCINT3)
!
(CKOUT/XCK/INTO) PD2 [(]4 | ! 121 PB2 (OCOA/PCINT2)
!
(INT1) PD3 [|5 my---------- 11[] PB1 (AINI/PCINT1)
©O© N~ 0 O 3
OO OO O
< LW A Y o
0O Q0 =z 0 o
a o 0] o o
S)
e 'é Q %
Q
] s
z
<

NOTE: Bottom pad should be soldered to ground.

Overview The ATtiny2313 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATtiny2313 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con-
sumption versus processing speed.

2 ATHiNY2313 m—————————————————————————

Block Diagram

Figure 2. Block Diagram

PAO - PA2

L

1
1
1
1
1
1
1
1 PORTA DRIVERS
1
1
1
1
1
1
1

vy 11

DATA REGISTER DATA DIR.
vee PORTA REG. PORTA INTERNAL
T_: Y Y CALIBRATED
: j j OSCILLATOR
| A A
< 8-BIT DATA BUS
INTERNAL OSCILLATOR
= OSCILLATOR
GND

PROGRAM STACK WATCHDOG TIMING AND —
"l COUNTER |' | POINTER |‘ > T ’l TIMER CONTROL |‘ > RESET
l l MCU CONTROL
::I SRAM REGISTER
|‘ ’ v

MCU STATUS | ON-CHIP |

REGISTER DEBUGGER
GENERAL

™| PURPOSE TIMER/
REGISTER > COUNTERS

PROGRAM
FLASH

|

INSTRUCTION
REGISTER

A

INTERRUPT [
UNIT <

INSTRUCTION
DECODER

l
CONTROL
usl
PROGRAMMINGI‘-_»I PEN| |
4 LOGIC SPI | <«—» USART
v A

AN

D

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
'
'
'
'
'
'
'
'
'
'
'
. LINES
'
'
'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
'
'

x i Yy v v 1 y 1
0] P:: DATA REGISTER DATA DIR. DATA REGISTER DATA DIR.
+ 9 o PORTB REG. PORTB PORTD REG. PORTD
LS
< [e]
8]
| PORTB DRIVERS PORTD DRIVERS |
A A
T O N O 0 I O N S .
A2 A
PBO - PB7 PDO - PD6

ATMEL ;

2543L-AVR-08/10

4

ATMEL

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATtiny2313 provides the following features: 2K bytes of In-System Programmable Flash,
128 bytes EEPROM, 128 bytes SRAM, 18 general purpose 1/O lines, 32 general purpose work-
ing registers, a single-wire Interface for On-chip Debugging, two flexible Timer/Counters with
compare modes, internal and external interrupts, a serial programmable USART, Universal
Serial Interface with Start Condition Detector, a programmable Watchdog Timer with internal
Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU
while allowing the SRAM, Timer/Counters, and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next interrupt or hardware reset. In Standby mode, the crystal/resonator Oscil-
lator is running while the rest of the device is sleeping. This allows very fast start-up combined
with low-power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, or by a conventional non-volatile memory programmer. By combining an 8-bit
RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATtiny2313
is a powerful microcontroller that provides a highly flexible and cost effective solution to many
embedded control applications.

The ATtiny2313 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.

ATHiNY2313 m—————————————————————————

2543L-AVR-08/10

Pin Descriptions

VCC Digital supply voltage.
GND Ground.
Port A (PA2..PA0) Port A is a 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A also serves the functions of various special features of the ATtiny2313 as listed on page
53.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny2313 as listed on page
53.

Port D (PD6..PDO0) Port D is a 7-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATtiny2313 as listed on page
56.

RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page
34. Shorter pulses are not guaranteed to generate a reset. The Reset Input is an alternate func-
tion for PA2 and dW.

XTALA Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL1
is an alternate function for PAO.

XTAL2 Output from the inverting Oscillator amplifier. XTALZ2 is an alternate function for PA1.

ATMEL ;

2543L-AVR-08/10

General
Information

Resources

Code Examples

ATMEL

A comprehensive set of development tools, application notes and datasheets are available for
downloadon http://www.atmel.com/avr.

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

Disclaimer Typical values contained in this data sheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

6 ATtlny231 3 |

2543L-AVR-08/10

AVR CPU Core

Introduction

Architectural

Overview

2543L-AVR-08/10

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

Figure 3. Block Diagram of the AVR Architecture

(Data Bus 8-bit

4
Program Status
Flash < [<
Program Counter and Control
Memory <
Interrupt
Y > 32x8 > Unit
Instruction General
Register Purpose h SP
< Registrers <> Unit
A
Instruction Watchdog
Decoder A Y < Timer
o g N
= ‘»
[} [}
l 8 £ ALU PR Analog
Control Lines 3 b Comparator
<
- ©
8] (0]
(0] =
= < ->
o = <> /0 Modulel
R Data <« >l 110 Module 2
> SRAM
<—>»| /O Module n
EEPROM <
I/O Lines <

\

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File —in one clock cycle.

ATMEL v

ALU - Arithmetic
Logic Unit

Status Register

ATMEL

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0 space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, and other 1/O functions. The 1/O Memory can be accessed directly, or as the Data Space
locations following those of the Register File, 0x20 - Ox5F.

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

8 ATHiNY2313 m—————————————————————————

2543L-AVR-08/10

General Purpose
Register File

2543L-AVR-08/10

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0
| '+ | = | w | s | v N z ¢ | sRree

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

* Bit 6 — T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the

BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

* Bit 5 — H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

» Bit4-S:SignBit,S=N®V

The S-bit is always an exclusive or between the negative flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

* Bit 3 - V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

* Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

* Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

* Bit 0 - C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

* One 8-bit output operand and one 8-bit result input

» Two 8-bit output operands and one 8-bit result input

* Two 8-bit output operands and one 16-bit result input
* One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

ATMEL ;

ATMEL

Figure 4. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 O0xOF
Working R16 0x10
Registers R17 0x11
R26 0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 0x1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

The X-register, Y- The registers R26..R31 have some added functions to their general purpose usage. These reg-
register, and Z-register isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-, Y-, and Z-registers

15 XH XL
X-register I 7 0 I 7 0 I
R27 (0x1B) R26 (Ox1A)
15 YH YL
Y-register |7 o]~ 0]
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register 7 0 |7 0 |
R31 (OX1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

10 ATEINY2.3 71 3 o ———

2543L-AVR-08/10

Stack Pointer

Instruction
Execution Timing

2543L-AVR-08/10

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 11 10 9 8
- - - - - - - - SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R/W R/IW R/W R/IW R/W R/W RIW R/W
Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkspy, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions
T1 T2 T3 T4

ok — A N

1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

T

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X X X X

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-

tion register.
A|IIIEI. 11
Y ©)

Reset and
Interrupt Handling

Figure 7. Single Cycle ALU Operation

T1 T2 T3 T4
: : : :
1 1 1 1
chkepy — I I I
Total Execution Time : > : :
1 1 1 1
Register Operands Fetch i i i :
1 1 1 1
ALU Operation Execute : : : ;
1 1 1 1
Result Write Back : . D : :
1 L 1 1

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 44. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. Refer to “Interrupts” on page 44 for more information.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
interrupt flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared,
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared
by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the

12 ATEINY 237 3 o ————

2543L-AVR-08/10

CLlI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence..

Assembly Code Example

in rl6, SREG ; store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
__disable interrupt();

EECR |= (1<<EEMPE) ; /* start EEPROM write */
EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable
sleep; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */
__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt (s) */

Interrupt Response The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-

Time mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

ATMEL 1

2543L-AVR-08/10

ATMEL

AVR ATtiny231 3 This section describes the different memories in the ATtiny2313. The AVR architecture has two

Memories

In-System
Reprogrammable
Flash Program
Memory

main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATtiny2313 features an EEPROM Memory for data storage. All three memory spaces are linear
and regular.

The ATtiny2313 contains 2K bytes On-chip In-System Reprogrammable Flash memory for pro-
gram storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 1K x
16.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATtiny2313 Pro-
gram Counter (PC) is 10 bits wide, thus addressing the 1K program memory locations. “Memory
Programming” on page 158 contains a detailed description on Flash data serial downloading
using the SPI pins.

Constant tables can be allocated within the entire program memory address space (see the LPM
— Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 11.

Figure 8. Program Memory Map

Program Memory

0x0000

Ox03FF

14 ATEiNY2313 m—————————————————————

2543L-AVR-08/10

SRAM Data
Memory

Data Memory Access
Times

2543L-AVR-08/10

Figure 9 shows how the ATtiny2313 SRAM Memory is organized.

The lower 224 data memory locations address both the Register File, the I/O memory, Extended
I/0O memory, and the internal data SRAM. The first 32 locations address the Register File, the
next 64 location the standard 1/O memory, and the next 128 locations address the internal data
SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 128 bytes of internal data
SRAM in the ATtiny2313 are all accessible through all these addressing modes. The Register
File is described in “General Purpose Register File” on page 9.

Figure 9. Data Memory Map

Data Memory

32 Registers 0x0000 - 0x001F
64 1/0 Registers | 0x0020 - 0x005F
0x0060
Internal SRAM
(128 x 8)
0x00DF

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clksp, cycles as described in Figure 10.

ATMEL 1

EEPROM Data
Memory

EEPROM Read/Write
Access

The EEPROM Address
Register

ATMEL

Figure 10. On-chip Data SRAM Access Cycles

Tl T2 T3

ok —4 N— 1

cPU . X X
Address ' Compute Address | X Address valid !
1 1 1
Data — ~ 3 =,
1 1 1 E
WR , 2\ =
1 1 1 —
1 1 / i -
Data - —(P —
1 1 T ©
1 1 1 &
1 1]
RD T T / I\ —
1 1

Memory Access Instruction Next Instruction

The ATtiny2313 contains 128 bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register. For a detailed description of Serial data downloading to the
EEPROM, see page 172.

The EEPROM Access Registers are accessible in the 1/0 space.

The write access time for the EEPROM is given in Table 1. A self-timing function, however, lets
the user software detect when the next byte can be written. If the user code contains instructions
that write the EEPROM, some precautions must be taken. In heavily filtered power supplies, V¢
is likely to rise or fall slowly on power-up/down. This causes the device for some period of time to
run at a voltage lower than specified as minimum for the clock frequency used. See “Preventing
EEPROM Corruption” on page 20. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

Bit 7 6 5 4 3 2 1 0

I - EEAR6 | EEAR5 | EEAR4 | EEAR3 | EEAR2 | EEAR1 EEARO I EEAR
Read/Write R R/W R/W R/IW R/IW R/IW R/W R/IW
Initial Value 0 X X X X X X X

¢ Bit 7 — Res: Reserved Bit

This bit is reserved in the ATtiny2313 and will always read as zero.

16 ATEINY23 71 3 o ———————

2543L-AVR-08/10

The EEPROM Data
Register - EEDR

The EEPROM Control
Register - EECR

2543L-AVR-08/10

» Bits 6..0 - EEARG..0: EEPROM Address

The EEPROM Address Register — EEAR specify the EEPROM address in the 128 bytes
EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 127. The ini-
tial value of EEAR is undefined. A proper value must be written before the EEPROM may be
accessed.

Bit 7 6 5 4 3 2 1 0
| wse LSB | EEDR

Read/Write RIW RIW R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 — EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

Bit 7 6 5 4 3 2 1 0

I - EEPM1 EEPMO EERIE EEMPE EEPE EERE I EECR
Read/Write R R R/W R/IW R/IW R/IW R/IW R/IW
Initial Value 0 0 X X 0 0 X 0

¢ Bits 7..6 — Res: Reserved Bits

These bits are reserved bits in the ATtiny2313 and will always read as zero.
» Bits 5,4 - EEPM1 and EEPM0: EEPROM Programming Mode Bits

The EEPROM Programming mode bits setting defines which programming action that will be
triggered when writing EEPE. It is possible to program data in one atomic operation (erase the
old value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 1. While EEPE is
set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00
unless the EEPROM is busy programming.

Table 1. EEPROM Mode Bits

Programming
EEPM1 | EEPMO Time Operation
0 0 3.4 ms Erase and Write in one operation (Atomic Operation)
0 1 1.8 ms Erase Only
1 0 1.8 ms Write Only
1 1 - Reserved for future use

» Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready Interrupt generates a constant inter-
rupt when Non-volatile memory is ready for programming.

ATMEL L

Atomic Byte
Programming

Split Byte
Programming

Erase

Write

ATMEL

* Bit 2 - EEMPE: EEPROM Master Program Enable
The EEMPE bit determines whether writing EEPE to one will have effect or not.

When EEMPE is set, setting EEPE within four clock cycles will program the EEPROM at the
selected address. If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles.

* Bit1 - EEPE: EEPROM Program Enable

The EEPROM Program Enable Signal EEPE is the programming enable signal to the EEPROM.
When EEPE is written, the EEPROM will be programmed according to the EEPMn bits setting.
The EEMPE bit must be written to one before a logical one is written to EEPE, otherwise no
EEPROM write takes place. When the write access time has elapsed, the EEPE bit is cleared by
hardware. When EEPE has been set, the CPU is halted for two cycles before the next instruction
is executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal — EERE - is the read strobe to the EEPROM. When the cor-
rect address is set up in the EEAR Register, the EERE bit must be written to one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed. The user should poll the EEPE bit before starting the read opera-
tion. If a write operation is in progress, it is neither possible to read the EEPROM, nor to change
the EEAR Register.

Using Atomic Byte Programming is the simplest mode. When writing a byte to the EEPROM, the
user must write the address into the EEAR Register and data into EEDR Register. If the EEPMn
bits are zero, writing EEPE (within four cycles after EEMPE is written) will trigger the erase/write
operation. Both the erase and write cycle are done in one operation and the total programming
time is given in Table 1. The EEPE bit remains set until the erase and write operations are com-
pleted. While the device is busy with programming, it is not possible to do any other EEPROM
operations.

It is possible to split the erase and write cycle in two different operations. This may be useful if
the system requires short access time for some limited period of time (typically if the power sup-
ply voltage falls). In order to take advantage of this method, it is required that the locations to be
written have been erased before the write operation. But since the erase and write operations
are split, it is possible to do the erase operations when the system allows doing time-consuming
operations (typically after Power-up).

To erase a byte, the address must be written to EEAR. If the EEPMn bits are 0b01, writing the
EEPE (within four cycles after EEMPE is written) will trigger the erase operation only (program-
ming time is given in Table 1). The EEPE bit remains set until the erase operation completes.
While the device is busy programming, it is not possible to do any other EEPROM operations.

To write a location, the user must write the address into EEAR and the data into EEDR. If the
EEPMn bits are 0b10, writing the EEPE (within four cycles after EEMPE is written) will trigger
the write operation only (programming time is given in Table 1). The EEPE bit remains set until
the write operation completes. If the location to be written has not been erased before write, the
data that is stored must be considered as lost. While the device is busy with programming, it is
not possible to do any other EEPROM operations.

The calibrated Oscillator is used to time the EEPROM accesses. Make sure the Oscillator fre-
quency is within the requirements described in “Oscillator Calibration Register — OSCCAL” on
page 26.

18 ATEINY23 1 3 o ———

2543L-AVR-08/10

2543L-AVR-08/10

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glob-

ally) so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM write:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM write
; Set up address (rl7) in address register
out EEAR, rl7
; Write data (rlé) to data register
out EEDR,rlé6
; Write logical one to EEMPE
sbi EECR, EEMPE
; Start eeprom write by setting EEPE
sbi EECR, EEPE

ret

C Code Example

{

/* Wait for completion of previous write */
while (EECR & (1<<EEPE))
/* Set up address and data registers */

EEAR uiAddress;

EEDR = ucData;
/* Write logical one to EEMPE */

EECR |= (1<<EEMPE) ;
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

void EEPROM _write (unsigned int uiAddress, unsigned char ucData)

ATMEL

19

Preventing EEPROM
Corruption

1/0 Memory

ATMEL

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM read
; Set up address (rl7) in address register
out EEAR, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in 1rl16,EEDR

ret

C Code Example

unsigned char EEPROM read (unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEPE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

During periods of low V. the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V. reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

The 1/0 space definition of the ATtiny2313 is shown in “Register Summary” on page 211.

All ATtiny2313 1/Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32

20 ATHINY 231 3 o ———————

2543L-AVR-08/10

General Purpose 1/0
Registers

General Purpose 1/0
Register 2 — GPIOR2

General Purpose 1/0
Register 1 — GPIOR1

General Purpose 1/0
Register 0 — GPIOR0

2543L-AVR-08/10

general purpose working registers and the 1/0 space. I/O Registers within the address range
0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the 1/0 specific commands IN and OUT, the
I/O addresses 0x00 - Ox3F must be used. When addressing 1/0 Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other
AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be
used on registers containing such status flags. The CBI and SBI instructions work with registers
0x00 to 0x1F only.

The 1/0 and peripherals control registers are explained in later sections.

The ATtiny2313 contains three General Purpose I/O Registers. These registers can be used for
storing any information, and they are particularly useful for storing global variables and status
flags. General Purpose 1/0O Registers within the address range 0x00 - Ox1F are directly bit-
accessible using the SBI, CBI, SBIS, and SBIC instructions.

Bit 7 6 5 4 3 2 1 0
| wss LsB | GPIOR2
Read/Write RIW RIW RIW RW RW RW RIW RW
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| wse LSB | GPIOR1
Read/Write RIW RIW RIW RW RW RW RIW RW
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| wss LSB | GPIORO
Read/Write RIW RIW RIW RIW RIW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

ATMEL 2

ATMEL

System Clock

and Clock
Options
Clock Systems Figure 11 presents the principal clock systems in the AVR and their distribution. All of the clocks
and their need not be active at a given time. In order to reduce power consumption, the clocks to modules
Distribution not being used can be halted by using different sleep modes, as described in “Power Manage-

ment and Sleep Modes” on page 30. The clock systems are detailed below.

Figure 11. Clock Distribution

A A A 4
clk,q AVR Clock clkepy
Control Unit
CIkFLASH
A
Reset Logic Watchdog Timer
1 t
Source clock Watchdog clock
Clock
/ Multiplexer \
A 4 A T
Watchdog
Oscillator
External Clock oschatr Csailtor

CPU Clock — clkgpy The CPU clock is routed to parts of the system concerned with operation of the AVR core.

Examples of such modules are the General Purpose Register File, the Status Register and the

data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing

general operations and calculations.
I/0 Clock - clk;q The 1/O clock is used by the majority of the I/O modules, like Timer/Counters, and USART. The

I/0 clock is also used by the External Interrupt module, but note that some external interrupts
are detected by asynchronous logic, allowing such interrupts to be detected even if the 1/0 clock
is halted. Also note that start condition detection in the USI module is carried out asynchronously
when clk, is halted, enabling USI start condition detection in all sleep modes.

Flash Clock — clkg oy The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

22 ATHINY 231 3 o ———

2543L-AVR-08/10

Clock Sources The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 2. Device Clocking Select"

Device Clocking Option CKSEL3..0
External Clock 0000
Calibrated Internal RC Oscillator 4MHz 0010
Calibrated internal RC Oscillator 8MHz 0100
Watchdog Oscillator 128kHz 0110
External Crystal/Ceramic Resonator 1000 - 1111
Reserved 0001/0011/0101/0111

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down, the selected clock source is used to time the start-up, ensuring sta-
ble Oscillator operation before instruction execution starts. When the CPU starts from reset,
there is an additional delay allowing the power to reach a stable level before commencing nor-
mal operation. The Watchdog Oscillator is used for timing this real-time part of the start-up time.
The number of WDT Oscillator cycles used for each time-out is shown in Table 3. The frequency
of the Watchdog Oscillator is voltage dependent as shown in “ATtiny2313 Typical Characteris-
tics” on page 181.

Table 3. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
4.1 ms 4.3 ms 512
65 ms 69 ms 8K (8,192)
Default Clock The device is shipped with CKSEL = “0100”, SUT = “10”, and CKDIV8 programmed. The default
Source clock source setting is the Internal RC Oscillator with longest start-up time and an initial system

clock prescaling of 8, resulting in 1.0 MHz system clock. This default setting ensures that all
users can make their desired clock source setting using an In-System or Parallel programmer.

Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 12 on page 24. Either a quartz
crystal or a ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 4 on page 24. For ceramic resonators, the capacitor values
given by the manufacturer should be used.

ATMEL 2

2543L-AVR-08/10

ATMEL

Figure 12. Crystal Oscillator Connections

C2

— I—F XTALZ2
c1 7
o St x7AL1

GND

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 4.

Table 4. Crystal Oscillator Operating Modes

Recommended Range for Capacitors C1
CKSEL3..1 Frequency Range(" (MHz) and C2 for Use with Crystals (pF)
100 04-0.9 -
101 0.9-3.0 12 -22
110 3.0-8.0 12 -22
1M1 8.0- 12 - 22

Notes: 1. The frequency ranges are preliminary values. Actual values are TBD.
2. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
5.

ATHiNY2313 m—————————————————————————

Calibrated Internal
RC Oscillator

2543L-AVR-08/10

Table 5. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
CKSELO | SUT1..0 Power-save (Vee = 5.0V) Recommended Usage

0 00 258 CK(M 14CK + 4.1 ms Ceramic resonator, fast
rising power

0 01 258 CK™M 14CK + 65 ms Ceramic resonator,
slowly rising power

0 10 1K CK®@ 14CK Ceramic resonator,
BOD enabled

0 11 1K CK® 14CK + 4.1 ms Ceramic resonator, fast
rising power

1 00 1K CK® 14CK + 65 ms Ceramic resonator,
slowly rising power

1 01 16K CK 14CK Crystal Oscillator, BOD
enabled

1 10 16K CK 14CK +4.1 ms Crystal Oscillator, fast
rising power

1 1 16K CK 14CK + 65 ms Crystal Oscillator,
slowly rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

The calibrated internal RC Oscillator provides a fixed 8.0 MHz clock. The frequency is nominal
value at 3V and 25°C. If 8 MHz frequency exceeds the specification of the device (depends on
V¢c), the CKDIV8 Fuse must be programmed in order to divide the internal frequency by 8 dur-
ing start-up. The device is shipped with the CKDIV8 Fuse programmed. This clock may be
selected as the system clock by programming the CKSEL Fuses as shown in Table 6. If
selected, it will operate with no external components. During reset, hardware loads the calibra-
tion byte into the OSCCAL Register and thereby automatically calibrates the RC Oscillator. At
3V and 25°C, this calibration gives a frequency within + 10% of the nominal frequency. Using
calibration methods as described in application notes available at www.atmel.com/avr it is possi-
ble to achieve + 2% accuracy at any given V. and Temperature. When this Oscillator is used
as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and for the
Reset Time-out. For more information on the pre-programmed calibration value, see the section
“Calibration Byte” on page 160.

Table 6. Internal Calibrated RC Oscillator Operating Modes

CKSEL3..0 Nominal Frequency
0010 - 0011 4.0 MHz
0100 - 0101 8.0 MHz(")

Note: 1. The device is shipped with this option selected.

ATMEL 2

Oscillator Calibration
Register — OSCCAL

ATMEL

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 7.

Table 7. Start-up times for the internal calibrated RC Oscillator clock selection

Start-up Time from Power- | Additional Delay from
SUT1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK +4.1 ms Fast rising power
100 6 CK 14CK + 65 ms Slowly rising power
1 Reserved

Note: 1. The device is shipped with this option selected.

Bit 7 6 5 4 3 2 1 0

| - CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO | OSCCAL
Read/Write R R/W R/W R/IW R/W R/W R/W R/IW
Initial Value Device Specific Calibration Value

¢ Bits 6..0 - CALG6..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove process vari-
ations from the Oscillator frequency. This is done automatically during Chip Reset. When
OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero values to this regis-
ter will increase the frequency of the internal Oscillator. Writing Ox7F to the register gives the
highest available frequency. The calibrated Oscillator is used to time EEPROM and Flash
access. If EEPROM or Flash is written, do not calibrate to more than 10% above the nominal fre-
quency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is intended for
calibration to 8.0/4.0 MHz. Tuning to other values is not guaranteed, as indicated in Table 8.

Avoid changing the calibration value in large steps when calibrating the Calibrated Internal RC
Oscillator to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one cycle to the next can lead to unpredictable behavior. Changes in OSCCAL should not
exceed 0x20 for each calibration.

Table 8. Internal RC Oscillator Frequency Range.

Min Frequency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency Nominal Frequency
0x00 50% 100%
Ox3F 75% 150%
Ox7F 100% 200%
26 ATHINY 231 3 o —————

2543L-AVR-08/10

External Clock

2543L-AVR-08/10

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
13. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.

Figure 13. External Clock Drive Configuration

NC —— XTAL2
EXTERNAL
CLOCK ——— XTAL1
SIGNAL
GND

—

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 10.

Table 9. Crystal Oscillator Clock Frequency

CKSEL3..0 Frequency Range

0000 - 0001 0-16 MHz

Table 10. Start-up Times for the External Clock Selection

Start-up Time from Power- | Additional Delay from
SUT1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK +4.1 ms Fast rising power
10 6 CK 14CK + 65 ms Slowly rising power
1 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation.

ATMEL 2

128 kHz Internal
Oscillator

System Clock
Prescalar

CLKPR - Clock
Prescale Register

ATMEL

The 128 kHz Internal Oscillator is a low power Oscillator providing a clock of 128 kHz. The fre-
quency is nominal at 3 V and 25°C. This clock may be selected as the system clock by
programming the CKSEL Fuses to 0110.

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 11.

Table 11. Start-up Times for the 128 kHz Internal Oscillator

Start-up Time from Power- | Additional Delay from
SUT1..0 down and Power-save Reset Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4 ms Fast rising power
10 6 CK 14CK + 64 ms Slowly rising power
11 Reserved

The ATtiny2313 has a system clock prescaler, and the system clock can be divided by setting
the “CLKPR — Clock Prescale Register” on page 28. This feature can be used to decrease the
system clock frequency and the power consumption when the requirement for processing power
is low. This can be used with all clock source options, and it will affect the clock frequency of the
CPU and all synchronous peripherals. clkq, clkcpy, and clkg agy are divided by a factor as
shown in Table 12 on page 29.

When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occurs in the clock system. It also ensures that no intermediate frequency is higher than
neither the clock frequency corresponding to the previous setting, nor the clock frequency corre-
sponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the
state of the prescaler - even if it were readable, and the exact time it takes to switch from one
clock division to the other cannot be exactly predicted. From the time the CLKPS values are writ-
ten, it takes between T1 + T2 and T1 + 2 * T2 before the new clock frequency is active. In this
interval, two active clock edges are produced. Here, T1 is the previous clock period, and T2 is
the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

Bit 7 6 5 4 3 2 1 0

I CLKPCE - - - CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO I CLKPR
Read/Write R/W R R R R/IW R/IW R/IW R/W
Initial Value 0 0 0 0 See Bit Description

* Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is

28 ATHINY 231 3 o ——————

2543L-AVR-08/10

2543L-AVR-08/10

cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

¢ Bits 3:0 — CLKPS3:0: Clock Prescaler Select Bits 3:0

These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 12 on page 29.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if
the selected clock source has a higher frequency than the maximum frequency of the device at
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 12. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor
0 0 0 0 1
0 0 0 1 2
0 0 1 0 4
0 0 1 1 8
0 1 0 0 16
0 1 0 1 32
0 1 1 0 64
0 1 1 1 128
1 0 0 0 256
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

ATMEL 2

Power
Management
and Sleep
Modes

MCU Control Register
— MCUCR

Idle Mode

ATMEL

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the three sleep modes, the SE bit in MCUCR must be written to logic one and a
SLEEP instruction must be executed. The SM1 and SMO bits in the MCUCR Register select
which sleep mode (ldle, Power-down, or Standby) will be activated by the SLEEP instruction.
See Table 13 for a summary. If an enabled interrupt occurs while the MCU is in a sleep mode,
the MCU wakes up. The MCU is then halted for four cycles in addition to the start-up time, exe-
cutes the interrupt routine, and resumes execution from the instruction following SLEEP. The
contents of the register file and SRAM are unaltered when the device wakes up from sleep. If a
reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.

Figure 11 on page 22 presents the different clock systems in the ATtiny2313, and their distribu-
tion. The figure is helpful in selecting an appropriate sleep mode.

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
| puD | sm1 | SE | sMo | Isci1 | ISC10 | ISCo1 | ISC00 | MCUCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 6, 4 — SM1..0: Sleep Mode Select Bits 1 and 0

These bits select between the five available sleep modes as shown in Table 13.

Table 13. Sleep Mode Select

SM1 SMO Sleep Mode
0 0 Idle
0 1 Power-down
1 0 Standby
1 1 Power-down

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

e Bit 5 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

When the SM1..0 bits are written to 00, the SLEEP instruction makes the MCU enter Idle mode,
stopping the CPU but allowing the UART, Analog Comparator, ADC, USI, Timer/Counters,
Watchdog, and the interrupt system to continue operating. This sleep mode basically halts
clkgpy and clkg sy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and UART Transmit Complete interrupts. If wake-up from the Ana-
log Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode.

30 ATHINY 231 3

2543L-AVR-08/10

Power-down Mode When the SM1..0 bits are written to 01 or 11, the SLEEP instruction makes the MCU enter

Standby Mode

Minimizing Power
Consumption

Analog Comparator

Brown-out Detector

2543L-AVR-08/10

Power-down mode. In this mode, the external Oscillator is stopped, while the external interrupts,
the USI start condition detection, and the Watchdog continue operating (if enabled). Only an
External Reset, a Watchdog Reset, a Brown-out Reset, US| start condition interrupt, an external
level interrupt on INTO, or a pin change interrupt can wake up the MCU. This sleep mode basi-
cally halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 59
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 23.

When the SM1..0 bits are 10 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

Table 14. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains | Oscillators Wake-up Sources
o
=
5 o o)
c2 .5 &
z ° zZ & | E9 | W o
5 2 K] - c P Ww > [
o o o o) o © » T ST o -
o jra 2 © - C © £
x x X c ES| o |l ao £ a
Sleep Mode| B 5 S L Za| D0 | o o) =
Idle X X X X X X X
Power-down X@ X X
Standby™" X X X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. For INTO, only level interrupt.

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

When entering Idle mode, the Analog Comparator should be disabled if not used. In other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. Refer to “Analog Comparator” on page 149 for details on how to
configure the Analog Comparator.

If the Brown-out Detector is not needed by the application, this module should be turned off. If

the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-

ATMEL 2

Internal Voltage
Reference

Watchdog Timer

Port Pins

ATMEL

nificantly to the total current consumption. Refer to “Brown-out Detection” on page 35 for details
on how to configure the Brown-out Detector.

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection or the
Analog Comparator. If these modules are disabled as described in the sections above, the inter-
nal voltage reference will be disabled and it will not be consuming power. When turned on again,
the user must allow the reference to start up before the output is used. If the reference is kept on
in sleep mode, the output can be used immediately. Refer to “Internal Voltage Reference” on
page 38 for details on the start-up time.

If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Interrupts” on page 44 for details on how to configure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where the 1/0
clock (clkyg) is stopped, the input buffers of the device will be disabled. This ensures that no
power is consumed by the input logic when not needed. In some cases, the input logic is needed
for detecting wake-up conditions, and it will then be enabled. Refer to the section “Digital Input
Enable and Sleep Modes” on page 50 for details on which pins are enabled. If the input buffer is
enabled and the input signal is left floating or have an analog signal level close to V¢/2, the
input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to V/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR). Refer to
“Digital Input Disable Register — DIDR” on page 150.

32 ATHINY 23 3 o —————

2543L-AVR-08/10

System Control
and Reset

Resetting the AVR

Reset Sources

2543L-AVR-08/10

During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be an RIMP — Relative
Jump — instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. The circuit diagram in Figure 14 shows the reset logic. Table 15 defines the electrical
parameters of the reset circuitry.

The I/0O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in “Clock Sources” on page 23.

The ATtiny2313 has four sources of reset:

* Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (VpoT).

» External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length.

+ Watchdog Reset. The MCU is reset when the Watchdog Timer period expires, the Watchdog
is enabled, and Watchdog Interrupt is disabled.

+ Brown-out Reset. The MCU is reset when the supply voltage V. is below the Brown-out
Reset threshold (Vzgr) and the Brown-out Detector is enabled.
Figure 14. Reset Logic

DATA BUS

MCU Status
Register (MCUSR)

Wl f L w
| o | o
O|O|E|la
Power-on Reset o @ Xl =
VvCcC -
Circuit
Brown-out
BODLEVEL [2..0] Reset Circuit
jm
Pull-up Resistor 7]
w
mEEET SPIKE \ \ «
RESET FILTER Reset Circuit i/ s Q— <—Z(l
R]
=
Z
Watchdog

Timer

COUNTER RESET

Watchdog
Oscillator —|_’
Clock CK Delay Counters
Generator TIMEOUT

CKSEL[3:0] M

suTH0) — |

ATMEL s

ATMEL

Table 15. Reset Characteristics

Symbol Parameter Condition mMin®” | Typ" | Max) | Units

Power-on Reset
Threshold Voltage T, =-40 - to +85°C 1.2 \Y

(rising)
Power-on Reset

Threshold Voltage T, =-40 to +85°C 1.1 \Y,
(falling)®

RESET Pin Threshold

Veor

VRST | voltage Vec =1.8-5.5V 0.2 Vee 0.9 Ve %
Minimum pulse width _
'RsT | on RESET Pin Vec =1.8-5.5V 25 us

Notes: 1. Values are guidelines only. Actual values are TBD.
2. The Power-on Reset will not work unless the supply voltage has been below Vpq7 (falling)

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 15. The POR is activated whenever V. is below the dete